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Climate change increases cross-species viral 
transmission risk

Colin J. Carlson1,2,7 ✉, Gregory F. Albery1,3,7 ✉, Cory Merow4, Christopher H. Trisos5,  
Casey M. Zipfel1, Evan A. Eskew3,6, Kevin J. Olival3, Noam Ross3 & Shweta Bansal1

At least 10,000 virus species have the ability to infect humans but, at present, the vast 
majority are circulating silently in wild mammals1,2. However, changes in climate and 
land use will lead to opportunities for viral sharing among previously geographically 
isolated species of wildlife3,4. In some cases, this will facilitate zoonotic spillover—a 
mechanistic link between global environmental change and disease emergence. Here 
we simulate potential hotspots of future viral sharing, using a phylogeographical 
model of the mammal–virus network, and projections of geographical range shifts for 
3,139 mammal species under climate-change and land-use scenarios for the year 2070. 
We predict that species will aggregate in new combinations at high elevations, in 
biodiversity hotspots, and in areas of high human population density in Asia and 
Africa, causing the cross-species transmission of their associated viruses an estimated 
4,000 times. Owing to their unique dispersal ability, bats account for the majority of 
novel viral sharing and are likely to share viruses along evolutionary pathways that will 
facilitate future emergence in humans. Notably, we find that this ecological transition 
may already be underway, and holding warming under 2 °C within the twenty-first 
century will not reduce future viral sharing. Our findings highlight an urgent need to 
pair viral surveillance and discovery efforts with biodiversity surveys tracking the 
range shifts of species, especially in tropical regions that contain the most zoonoses 
and are experiencing rapid warming.

In the face of rapid environmental change, survival for many species 
depends on moving to track shifting climates. Even in a best-case sce-
nario, the geographical ranges of many species are projected to shift a 
hundred kilometres or more in the next century5,6. In the process, many 
animals will bring their parasites and pathogens into new environments. 
This poses a measurable threat to global health, particularly given 
several recent epidemics and pandemics of viruses that originate in 
wildlife (zoonotic viruses, or zoonoses)7,8. Most frameworks for pre-
dicting cross-species transmission therefore focus on the steps that 
enable animal pathogens to make the leap to human hosts (a process 
called spillover)8,9. However, zoonotic viruses make up a small fraction 
of total viral diversity, and viral evolution is an undirected process, in 
which humans are only one of at least around 6,500 mammalian hosts 
with over 21 million possible pairwise combinations (not including 
the other four classes of vertebrates, which have a much greater frac-
tion of undescribed viral diversity). If those host species track shift-
ing climates, they will share viruses not only with humans, but also 
with each other, for the very first time3,4. Despite their importance, 
spillover events are probably just the tip of the iceberg; by numbers 
alone, most cross-species transmission events that are attributable to 
climate change will probably occur among wildlife hosts, potentially 
threatening wildlife populations and largely undetected by zoonotic 
disease surveillance.

The scale of this process will depend on opportunity and compat-
ibility10,11, and both dimensions pose an important predictive chal-
lenge. As only a few species are common worldwide, most hosts have 
no opportunity to exchange pathogens: of all possible pairs of mammal 
species, only around 7% share any geographical range, and only about 
6% are currently known to host one or more of the same virus species 
(hereafter, viral sharing)10. As host geographical ranges shift, some 
interactions will become possible for the first time, and a subset will 
lead to viral establishment in a previously inaccessible host (novel viral 
sharing). The potential ability of species to track shifting climate and 
habitat conditions will determine which pairs of species encounter each 
other for the first time. Once the ranges of species nominally overlap, 
habitat selection and behavioural differences can further limit contact. 
Although some viruses spread environmentally or by arthropod vectors 
between spatially proximate species with no direct behavioural contact, 
sharing is more likely on average among species with more ecologi-
cal overlap. Even among species in close contact, most cross-species 
transmission events are still a dead end. Progressively smaller subsets 
of viruses can infect the cells of a new host, proliferate, cause disease 
and transmit onwards in a new host. Their ability to do so is determined 
by the compatibility between viral structures, host cell receptors and 
host immunity. As closely related species share both ecological and 
immunological traits through identity by descent, phylogeny is a strong 
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predictor of pathogen sharing and of susceptibility to invasion by new 
viruses11. In a changing world, these mechanisms can help to predict 
how ecosystem turnover could affect the global virome.

Although several studies have mapped current hotspots of emerging 
diseases2,7,12, few have forecasted them in the context of global change. 
With the global reassortment of animal biodiversity due to changes in 
climate and land use, it is unknown whether bats and rodents will still 
have a central role in viral emergence2 (Extended Data Fig. 1) or whether 
hotspots of viral emergence will stay in tropical rainforests12, which 
currently contain most of the undiscovered viruses2. Here, by project-
ing newly suitable habitat (which a species may or may not migrate to) 
and applying mechanistic biological rules for cross-species transmis-
sion, we predicted how and where global change could potentially 
create new opportunities for viral sharing, with particular attention to 
the potential connections between these risks and human health. We 
focused on mammals because they have some of the most complete 
biodiversity data, the highest proportion of viral diversity described1, 
and the greatest downstream relevance to human health and zoonotic 
disease emergence of any vertebrate class. We built species distribution 
models (SDMs) for 3,870 placental mammal species, and projected 
potential shifts in geographical range on the basis of four paired sce-
narios for changes in climate (Representative Concentration Pathways 
(RCPs)) and land use (Shared Socioeconomic Pathways (SSPs)) by 2070. 
These scenarios characterize alternative futures for global environ-
mental change, from sustainable land-use change and a high chance of 
keeping global warming under 2 °C (SSP 1–RCP 2.6), to a high chance 
of more than 4 °C warming, continued fossil fuel reliance, and rapid 
land degradation and change (SSP 5–RCP 8.5; a detailed explanation 
is provided in the Methods). We present the results for SSP 1–RCP 2.6 
in the main text because this scenario is most in line with the goals of 
the Paris Agreement to keep global warming well below 2 °C (ref. 13). 
We quantified model uncertainty in projected climate futures using 
nine global climate models (GCMs) from the Coupled Model Inter-
comparison Project Phase 6 (CMIP6). As many species are unlikely to 
be biologically suited for rapid range shifts and will therefore move 

slower than the local velocity of climate change, we constrained the 
speed of range shifts on the basis of the inferred allometric scaling of 
animal movement14, and compared scenarios that assumed limited 
dispersal against full dispersal (that is, no dispersal limitation).

We used projections of newly suitable habitat to identify where new 
range overlap among currently non-overlapping species could hap-
pen in the future (hereafter, first encounters). We then used a recently 
developed viral sharing model to predict the probability of a novel viral 
sharing event—here defined as the future cross-species transmission 
of at least one virus species, in this case between a pair of hosts during 
first encounters—on the basis of new geographical overlap and host 
phylogenetic similarity10, a first-order approximation of opportunity 
and compatibility (Extended Data Fig. 2). This model framework has 
previously provided insights into viral macroecology and zoonotic 
risk based on the ~1% of the global mammalian virome that has been 
described1,2,10. On the basis of the total number and distribution of 
first encounters among a subset of 3,139 species (Methods), we used 
cumulative viral sharing probabilities to estimate the total number 
of new sharing events that are expected (each of which describes the 
cross-species transmission of at least one virus). Using this approach, 
we tested the hypothesis that environmental change should alter mam-
mal communities in ways that expose hosts to new viruses, altering the 
structure of the whole mammal–virus network.

The effects of changes in climate and land use
If shifts in species range can keep pace with climate change, we pre-
dict that the vast majority of mammal species will overlap with at least 
one unfamiliar species somewhere in their potential future range, 
regardless of emissions scenario (mean ± s.d. across GCMs here and 
after; RCP 2.6: 98.6 ± 0.2%; RCP 8.5: 96.6 ± 0.8%). At the global level, 
geographical range shifts would permit over 300,000 first encoun-
ters in every climate scenario (SSP 1–RCP 2.6: 316,426 ± 1,719; SSP 5–
RCP 8.5: 313,973 ± 2,094; Fig. 1 and Extended Data Fig. 3). Compared 
with a present-day baseline, in which we calculated 345,850 current 
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Fig. 1 | Climate change will drive novel viral sharing among mammal 
species. a,b, The projected number of novel viral sharing events among 
mammal species in 2070 based on geographical range shifts of the 3139 host 

species from changes in climate and land use (SSP 1–RCP 2.6) without dispersal 
limits (a) and with dispersal limitation (b). Results are averaged across nine 
GCMs.
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pairwise overlaps among the 3,870 species (∼7%), this essentially rep-
resents a doubling of potential species contact. These first encounters 
between mammal species will occur everywhere in the world, but are 

concentrated in tropical Africa and southeast Asia (Extended Data Fig. 4).  
This result was counter to expectations that species might aggregate 
at higher latitudes, given that previous research has anticipated a link 
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Fig. 2 | Bats disproportionately drive future novel viral sharing.  
a,b, The spatial pattern of first encounters (in SSP 1–RCP 2.6) differs among 
range-shifting mammal pairs, including bat–bat and bat–non-bat encounters 
(a) and encounters among only non-bats (b). c–e, Using a linear model, we show 
that elevation (c), species richness (d) and land use (e) influence the number of 
new overlaps for bats and non-bats across scenarios (RCPs paired with SSPs as 

described in the Methods). n = 9 GCM replicates. Slopes for the elevation effect 
were generally steeply positive: a log10-transformed increase in elevation was 
associated with a 0.4–1.41 log10 increase in first encounters. The results were 
averaged across nine GCMs. CL, climate and land use change; CLD, climate and 
land use change with dispersal limits. The error bars in e are the s.e. of the 
model estimate.
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between climate change, range shifts and parasite host switching in the 
Arctic15,16. However, we found that, when species shift along latitudinal 
gradients, they travel in the same direction as others that are already 
included in their assemblage, leading to few first encounters. By con-
trast, when species track thermal optima along elevational gradients 
(allowing them to come from different directions, that is, mountains 
force species to cluster), they will aggregate in the most new combina-
tions in mountain ranges, especially in tropical areas with the highest 
baseline diversity, matching prior predictions17. This pattern was robust 
to climate model uncertainty (Supplementary Figs. 3–11) and to differ-
ences in dispersal ability (Fig. 2c). The most notable model variation 
is in the Amazon basin, as well as a small portion of the central African 
basin, Botswana and parts of the Indian subcontinent (Extended Data 
Fig. 5). These areas become essentially devoid of first encounters in 
the most sensitive climate models and warmest pathways, presumably 
because all are high-endemism basins of homogenous climate that 
may warm too much for species to escape into high-elevation refugia 
(a fairly well-documented pattern18–20).

This global reorganization of mammal assemblages is projected to 
substantially affect the structure of the mammalian virome. Account-
ing for geographical opportunity and phylogenetic compatibility, 
we project that a total of 316,426 (±1,719) first encounters in RCP 2.6 
would lead to 15,311 new sharing events (±140)—that is, a minimum of 
at least ∼15,000 cross-species transmission events of at least one new 
virus (but potentially many more) between a pair of naive host species. 
Assuming that viral sharing will initially be localized to areas of new 
host overlap, we mapped expected viral sharing events, and found 
again that most sharing should occur in high-elevation, species-rich 
ecosystems in Africa and Asia (Fig. 1a). If species survive a changing 
climate by aggregating in high-elevation refugia, this suggests that 
emerging viruses may be an increasing problem for their conserva-
tion21,22. Across scenarios, the spatial pattern of expected sharing events 
was nearly identical, and was dominated more by the extent of poten-
tial range shifts than by underlying community phylogenetic struc-
ture (Extended Data Fig. 6 and Supplementary Figs. 12–20). Although 

previous research has suggested that the phylogenetic structure of 
mammal communities might drive continental hotspots of pathogen 
sharing and emergence23, in our framework, opportunity drives spatial 
patterns more than compatibility. Given that phylogeny is a strong 
determinant of viral sharing in the underlying model, this difference 
from previous studies can probably be explained by evolutionary scale, 
where previous work focused on primates, and our study includes all 
mammals. At this broader scale, predicted viral sharing patterns mostly 
track total richness (see Fig. 3b of ref. 10) and, at finer scales, phylogeny 
has a stronger effect.

Dispersal drives the importance of bats
The intrinsic dispersal ability of species is likely to constrain their 
ability to move to newly suitable locations, and therefore to limit 
novel viral sharing (as are harder to predict extrinsic factors, such 
as landscape connectivity or facilitated migration by conservation 
efforts). We limited the dispersal potential of flightless species based 
on an established allometric scaling with body size, trophic rank and 
generation time14. Dispersal limits caused substantial decreases in 
predicted potential range expansions across all scenarios, especially 
for higher warming scenarios and therefore drove a reduction in first 
encounters and novel viral sharing. Even in RCP 2.6 (the scenario with 
the least warming), limiting dispersal reduced the number of first 
encounters by 61% (±0.3%) and reduced the associated viral sharing 
events by 70% (±0.1%) to 4,584 (±52) projected viral sharing events. As 
trophic position and body size determine dispersal ability, carnivores 
account for a slightly disproportionate number of first encounters, 
whereas ungulates and rodents have slightly fewer first encounters 
than expected at random (Extended Data Fig. 7). Spatial patterns also 
changed considerably when dispersal constraints were added, with 
the majority of first encounters and cross-species viral transmission 
events occurring in southeast Asia (Fig. 1b and Extended Data Figs. 4 
and 6). This viral sharing hotspot is driven disproportionately by bats, 
because their dispersal was left unconstrained within continents; we 
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Fig. 3 | Range expansions will expose naive hosts to zoonotic reservoirs.  
a, The predicted distribution of known African hosts of ZEBOV. b, The change 
in richness of these hosts as a result of range shifts (SSP 1–RCP 2.6). c, Projected 

first encounters with non-Ebola hosts. d, Bat–primate first encounters are 
projected to occur globally, producing new sharing events. The results were 
averaged across nine GCMs.
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made this choice given their exclusion from previous research char-
acterizing the dispersal ability of range-shifting mammals14, genetic 
evidence that flight enables bats—and their viruses—to often circulate 
at continental levels24,25 and data suggesting that bat distributions are 
already undergoing disproportionately rapid shifts26–34. Bats account 
for nearly 90% of first encounters after constraining dispersal in any 
climate scenario (RCP 2.6: 88% ± 0.1%; RCP 8.5: 89% ± 0.5%) and domi-
nate the spatial pattern, with most of their first encounters restricted 
to southeast Asia (Fig. 2).

The unique ability of bats for flight could be an important and pre-
viously unconsidered link between climate-driven range shifts and 
future changes in the mammalian virome. Even non-migratory bats can 
regularly travel hundreds of kilometres within a lifetime, far exceed-
ing what small mammals might be able to cover in 50 years; half of all 
bat population genetic studies have failed to find any evidence for 
isolation by distance35. This unique dispersal ability has inevitable 
epidemiological implications, with recent evidence suggesting that 
continental panmixia may be common for zoonotic reservoirs, enabling 
viral circulation at comparable scales24,25,36. Several studies have also 
identified ongoing rapid range expansions in bat species around the 
world26–34, with little mention in the broader climate change or emerg-
ing disease literature. If flight does enable bats to undergo more rapid 
range shifts than other mammals, we expect that they should drive the 
majority of new cross-species viral transmission, and probably bring 
zoonotic viruses into new regions. However, the ability of bats to move 
rapidly might be attenuated by the other biotic constraints to species 
distributions (for example, social behaviour and food availability, which 
are unaddressed by the current approach). This uncertainty adds an 
important new dimension to the ongoing debate about whether bats 
are unique in their higher viral richness, higher proportion of zoonotic 
viruses or immune adaptations compared with other mammals2,11.

Zoonotic emergence and human health
The effects of climate change on mammalian viral sharing patterns are 
likely to cascade in the future emergence of zoonotic viruses. Among 
the thousands of expected viral sharing events, some of the highest-risk 
zoonoses or potential zoonoses are likely to find new hosts. This may 
eventually pose a threat to human health—the same general rules for 

cross-species transmission explain spillover patterns for emerging 
zoonoses11, and the viral species that make successful jumps across 
wildlife species have the highest propensity for zoonotic emergence2. 
Just as the simian immunodeficiency virus making a host jump from 
monkeys to chimpanzees and gorillas facilitated the origins of HIV, or 
SARS-CoV spillover into civets enabled a bat virus to reach humans, 
these kinds of wildlife-to-wildlife host jumps may be evolutionary step-
ping stones for the approximately 10,000 potentially zoonotic viruses 
that are currently circulating in mammalian hosts1.

To illustrate this problem at the scale of a single pathogen’s ‘sharing 
network’ (the set of all hosts that are known or suspected to host the virus, 
and likely to share with those known hosts), we constructed a subnet-
work of 13 possible hosts of the Zaire ebolavirus (ZEBOV) in Africa, and 
projected possible first encounters involving these species (Fig. 3a–c  
and Extended Data Fig. 8). We project these 13 species to encounter 
3,695 (±49) new mammals in RCP 2.6, with a modest reduction to 2,627 
(±44) species when accounting for dispersal limitation, and little varia-
tion among climate scenarios (RCP 8.5: 3,529 ± 47 encounters without 
dispersal limits; 2,455 ± 88 with dispersal limits). Even with dispersal 
limits, these first encounters are predicted to produce almost one hun-
dred new viral sharing events (RCP 2.6: 96 ± 2; RCP 8.5: 86 ± 4) that might 
include ZEBOV and which cover a much broader part of Africa than the 
current zoonotic niche of Ebola37. Human spillover risk aside, this could 
expose several new wildlife species to a deadly virus that is historically 
responsible for sizable primate die-offs38. Moreover, for zoonoses like 
ZEBOV without known reservoirs, future host jumps—and, therefore, 
the emergence of a larger pool of potential reservoirs covering a greater 
geographical area (such as the potential introduction of ZEBOV to east 
African mammals)—would only complicate ongoing efforts to trace 
the sources of spillover and anticipate future emergence. Ebola is far 
from unique, with 8,429 ± 228 first encounters in RCP 2.6 between bats 
and primates, leading to an expected 110 ± 4 new viral sharing events 
even with dispersal limits (Fig. 3d; RCP 8.5: 7,326 ± 667 first encounters, 
90 ± 8 sharing events)—many potential zoonoses are likely to experi-
ence new evolutionary opportunities due to climate change.

Future hotspots of new mammal assemblages and viral evolution 
are projected to coincide with areas of high human population den-
sity, further increasing vulnerability to potential zoonoses. Potential 
first encounters are disproportionately likely to occur in areas that 
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are projected to be either human settled or used as cropland and less 
likely to occur in forests (Fig. 2e), despite current literature suggest-
ing that forests contain most emerging and undiscovered viruses12 
(Fig. 4). This finding is consistent for bats and non-bats, and may be 
an accident of geography, but more likely represents the tendency 
of human settlements to aggregate on continental edges and around 
biodiversity hotspots39. Regardless of the mechanism, we predict that 
tropical hotspots of novel viral sharing will broadly coincide with 
areas of high population density in 2070, especially in the Sahel, the 
Ethiopian highlands and the Rift Valley, India, eastern China, Indo-
nesia and the Philippines (Fig. 4). Some European population cen-
tres also land in these hotspots; recently emergent pathogens in this 
region like the Usutu virus highlight that these populations can still 
be vulnerable, despite greater surveillance and healthcare access. If 
range-shifting mammals create ecological release for undiscovered 
zoonoses, populations in any of these areas are likely to be vulner-
able, and some viruses will be able to spread globally from any of 
these population centres.

The effects of climate-change mitigation
Whereas most studies agree that climate-change mitigation through 
reducing greenhouse gas emissions will prevent extinctions and mini-
mize harmful ecosystem effects40, our results suggest that mitigation 
alone cannot reduce the likelihood of climate-driven viral sharing. 
Instead, the mildest scenarios for global warming appear likely to pro-
duce at least as much or even more cross-species viral transmission: 
when warming is slower, species can successfully track shifting climate 
optima, leading to more potential for range expansion and more first 
encounters. Accounting for dispersal limits, species are projected to 
experience a median potential loss (± SD) of 0.3% (±2.5%) of their range 
in RCP 2.6, with 49.8% (±3.8%) experiencing a net potential increase 

in range; by contrast, species were predicted to experience a 26.2% 
(±13.2%) median potential loss in RCP 8.5, and only 30.8% (±5.45%) 
potentially gained any range (Extended Data Fig. 3a). In fact, in RCP 8.5, 
we projected that 261 (±76) species could lose their entire range, with 
162 (±53) attributable to dispersal limits alone. As a result, there were 
5.4% (±1.7%) fewer potential first encounters in RCP 8.5 compared with 
in RCP 2.6 and, unexpectedly, a 1.9% (±0.3%) predicted reduction in 
the connectivity of the future global viral sharing network (Extended 
Data Fig. 3b, d). Overall, our results indicate that a mild perturbation 
of the climate system could create thousands of new opportunities for 
viruses to find new hosts.

We caution that these results should not be interpreted as a justifi-
cation for inaction, or as a possible upside to unmitigated warming, 
which will be accompanied by mass defaunation, devastating disease 
emergence, and unprecedented levels of human displacement and 
global instability40. Rather, our results highlight the urgency of better 
wildlife disease surveillance systems and public health infrastructure 
as a form of climate-change adaptation, even if mitigation efforts are 
successful and global warming stays below +2 °C above preindustrial 
levels.

The timing of ecological opportunity
As a final analysis, we examined the potential timing of climate-change 
impacts. We expected that most first encounters would occur later in 
the twenty-first century, given the time required for species’ habitats 
to shift (especially with dispersal constraints). To test this hypoth-
esis, we reproduced our analysis with an entirely new climate product 
(CHELSA v2.1; Methods) that enabled us to set a baseline in the recent 
past (1981–2010) and examine three time intervals of future impacts 
(2011–2040, 2041–2070 and 2071–2100). Projecting species distribu-
tions under the mean conditions in each interval, we identified the 
cumulative number of unique first encounters in each. Notably, we 
found that the majority of first encounters occur by the 2011–2040 
period (Fig. 5), although steady and sizeable increases continue through 
the rest of the century. Differences in the number of first encounters 
between time intervals (for example, RCP 2.6, 2011–2040, climate + 
land use: 391,716 ± 2,322; versus RCP 2.6, 2071–2100, climate + land 
use: 415,703 ± 3,537) are substantially greater than differences driven 
by climate scenarios and climate model uncertainty (for example, cli-
mate + land use, 2071–2100: lowest GCM–RCP combination: 413,120 
in RCP 2.6, GCM GFDL-ESM4; versus highest GCM–RCP combination: 
421,917 in RCP 2.6, GCM IPSL-CM6ALR), indicating that first encoun-
ters continue to non-trivially accumulate over time. However, those 
differences are still substantially less than the difference created by 
dispersal assumptions (for example, RCP 2.6, 2071–2100, climate + land 
use: 415,703 ± 3,537; versus RCP 2.6, 2071–2100, climate + land use + 
dispersal: 166,527 ± 1,905), and the proportion of future first encounters 
is much higher when dispersal maxima are restricted (Fig. 5). Put more 
succinctly, species continue to meet throughout the century, and our 
simulations indicate that how fast species move will matter more to 
the timing and magnitude of first encounters than how fast suitable 
habitat moves or has already moved. Moreover, the geography of first 
encounters remains consistent across all points in time (Extended 
Data Figs. 9 and 10).

Overall, these findings suggest that, in a world that has already 
passed global warming of +1 °C, the majority of climate-related 
opportunities for novel viral sharing may already have been real-
ized—if and only if species’ dispersal has kept pace with shifting 
habitat suitability. That premise—and, particularly, our simulation 
of bats as unconstrained by dispersal limits—is more tenuous over 
smaller timescales; research is urgently needed that estimates the 
real-time signal of climate-attributable range shifts. Even if these 
opportunities exist, the timing of cross-species transmission itself 
remains uncertain and unpredictable; our viral sharing model is 
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trained on an equilibrium level of connectivity, and we expect some 
degree of lag between interspecific contact and viral establishment. 
It is certainly possible or even likely that climate change is already 
reshaping the mammalian virome, and as warming continues over 
the next half-century, we predict that both the opportunities created 
for ecological novelty and the resulting effects on viral assemblages 
will begin to saturate.

Conclusions
Our study establishes a macroecological link between climate change 
and cross-species viral transmission. The patterns that we describe 
are probably further complicated by uncertainties in the species dis-
tribution modelling process, including local adaptation or plasticity 
in response to changing climates, or lack of landscape connectivity 
preventing dispersal. The projections that we make are also likely 
to be complicated by several ecological factors, including the tem-
perature sensitivity of viral host jumps41; potential independence of 
vector or non-mammal reservoir range shifts; or the possibility that 
defaunation especially at low elevations might interact with disease 
prevalence through biodiversity dilution and amplification effects 
not captured by our models42. Future work can expand the scope of 
our findings to other host–parasite systems4. Our approach, which 
combines viral sharing models with species distribution modelling 
approaches for thousands of species, is readily applied to other data-
sets. Birds have the best documented virome after mammals, and 
account for the majority of non-mammalian reservoirs of zoonotic 
viruses43; changing bird migration patterns in a warming world may 
be especially important targets for prediction. Similarly, with amphib-
ians facing disproportionately high extinction rates due to a global 
fungal panzootic, and emerging threats such as ranavirus causing 
conservation concern, pathogen exchange among amphibians may 
be especially important for conservation practitioners to under-
stand44. Finally, marine mammals are an important target given their 
exclusion here, especially after a recent study implicating reduced 
Arctic sea ice in novel viral transmission between pinnipeds and sea 
otters—a result that may be the first proof of concept for our proposed 
climate–disease link45.

Our study provides a template for how surveillance could target 
future hotspots of viral emergence in wildlife. In the next decade alone, 
it could cost at least a billion dollars to comprehensively identify and 
counteract zoonotic threats before they spread from wildlife reservoirs 
into human populations46. These efforts will be undertaken during 
the greatest period of global ecological change recorded in human 
history and, in a practical sense, the rapid movement of species (and 
their viromes) poses an unexpected challenge for virological research. 
Although several studies have addressed how range shifts in zoonotic 
reservoirs might expose humans to novel viruses, few have consid-
ered the fact that most new exposures will be among wildlife species. 
The relevance of this process is reinforced by the COVID-19 pandemic, 
which began only weeks after the completion of this study; the progeni-
tor of SARS-CoV-2 probably originated in southeast Asian horseshoe 
bats (Rhinolophus sp.), and may have spread to humans through an 
as-yet-unknown bridge host47. Although we caution against overin-
terpreting our results as explanatory of the current pandemic48, our 
findings suggest that climate change could easily become the dominant 
anthropogenic force in viral cross-species transmission, which will 
undoubtedly have a downstream effect on human health and pan-
demic risk. Tracking viral spillover into humans is paramount, but so 
is the monitoring of viral transmission among wildlife species. Tar-
geting surveillance in future hotspots of cross-species transmission, 
such as southeast Asia, and developing norms of open data sharing 
for the global scientific community, will help researchers to identify 
host jumps early on, ultimately improving our ability to respond to 
potential threats.
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Methods

Here we developed global maps for terrestrial mammals characterizing 
their habitat use and their ecological niche as a function of climate. 
We projected these into paired climate–land use futures for 2070, 
with dispersal limitations set by biological constraints for each spe-
cies. For a final subset of 3,139 species, we predicted the probability 
of viral sharing among species pairs using a model of the mammalian 
viral sharing network that is trained on phylogenetic relatedness and 
current geographical range overlaps. With that model, we mapped 
the projected hotspots of new viral sharing in different futures. All 
analyses were conducted in R (v.4.1.3). Analysis and visualization code 
is available at GitHub (https://github.com/viralemergence/iceberg).

Data
Mammal virus data. Our understanding of viral sharing patterns is 
based on a previously published dataset49. The dataset describes 2,805 
known associations between 754 species of mammalian host and 586 
species of virus, scraped from the taxonomic data stored in the Inter-
national Committee on Taxonomy of Viruses (ICTV) database. These 
data have previously been used in several studies modelling global 
viral diversity in wildlife1,50, including a previous study that developed 
the model of viral sharing we use here10. As that model is reproduced 
exactly in our study, we have made no further modifications to the 
data, and more detailed information on data management (such as 
the exclusion of Homo sapiens from that analysis) can be found in a 
previous publication10.

Biodiversity data. We downloaded Global Biodiversity Informat-
ics Facility (GBIF: https://www.gbif.org/) occurrence records for all 
mammals based on taxonomic names resolved by the IUCN Red List. 
Records spanned the years 1658 to 2019 and were intended to provide 
a comprehensive baseline of species distributional data for as many 
mammal species as possible. These records were filtered to those within 
a 10 km buffer of species’ IUCN range maps, and further filtered using 
the Grubbs outlier test (see below); this procedure is likely to eliminate 
most signal of climate-driven geographical range shifts from recent 
sightings. If any of that signal persists after these steps, there are two 
possible effects on models: extending the geographical extent attrib-
uted to a species’ current range and, potentially, expanding the climatic 
envelope that a model identifies as suitable for its presence. Both of 
these would increase the predicted rate of overlap among species pairs 
in their current (modelled) distributions, and reduce the predicted 
number of first encounters, making our predictions more conservative.

We developed SDMs for all 3,870 species with at least three unique 
terrestrial presence records at a 0.25° spatial resolution (approximately 
25 km by 25 km at the equator). To focus on species occurrence, we 
retained one unique point per 0.25° grid cell. This spatial resolution was 
chosen to match the available resolution of land-use change projections 
(see below). Spatial and environmental outliers were removed on the 
basis of Grubbs outlier tests51. To implement the Grubbs outlier tests 
for a given species, we defined a distance matrix between each record 
and the centroid of all records (in both environmental or geographical 
space, respectively) and determined whether the record with the largest 
distance was an outlier with respect to all other distances, at a given 
statistical significance (P = 1 × 10−3, to exclude only extreme outliers). 
If an outlier was detected, it was removed and the test was repeated 
until no additional outliers were detected.

Climate and land-use data. We compiled climate and land-use data 
from WorldClim 252 and the Land Use Harmonization 2 (LUH2) pro-
ject53, respectively, for both baseline conditions (operationalized as 
1970–2000 for the climate data, 2015 for land use and 2020 for dispersal 
limits; see ‘The effect of recent warming’ for an interrogation of the dif-
ference between climate baselines and actual present-day climate) and 

a half-century in the future (operationalized as 2061–2080 for climate, 
2070 for land use, and 2070 for dispersal).

The WorldClim dataset is widely used in ecology, biodiversity and 
agricultural projections of potential climate-change impacts. World-
Clim makes data available for current and future climates in the form 
of 19 preprocessed bioclimatic variables (Bioclim: BIO1–19). To reduce 
collinearity among climate variables in the SDMs, we selected five Bio-
clim variables from the full set of 19 Bioclim variables: mean annual 
temperature (BIO1), temperature seasonality (BIO4), annual precipita-
tion (BIO12), precipitation seasonality (coefficient of variation; BIO15) 
and precipitation of the driest quarter (BIO17). This is the largest set 
of Bioclim variables possible that keeps their correlation over a global 
extent suitably low (r < 0.7). The Bioclim variables for the historical 
climate are the mean from 1970–2000, and those for the future climate 
are the mean from 2060–2080.

To account for model uncertainty in climate projections, we used 
projections for future climates from all nine GCMs that are currently 
available on WorldClim 2 and participating in CMIP6—the most 
recent generation of climate models: BCC-CSM2-MR, CNRM-CM6-1, 
CNRM-ESM2-1, CanESM5, GFDL-ESM4, IPSL-CM6A-LR, MIROC-ES2L, 
MIROC6 and MRI-ESM2-0. These nine GCMs encompass a wide range of 
effective climate sensitivities from 2.6 K (MIROC6) to 5.6 K (CanESM5) 
compared with a range of 1.8–5.6 K across 27 CMIP6 models and 2.1–4.7 K  
for CMIP554. Temperature and precipitation for future climates have 
been downscaled and bias-corrected by WorldClim 2 using a change 
factor approach. The multi-year average of the GCM output for mini-
mum temperature, maximum temperature and total precipitation is 
calculated for each month of the simulated historical and future period, 
and the absolute (for temperature) or proportional (for precipitation) 
difference in these values is then calculated, resulting in climate anoma-
lies that are then applied to the 10 min spatial resolution observed 
historical dataset52,55. WorldClim 2 then calculates Bioclim variables on 
the basis of these downscaled and bias-corrected data. This approach 
makes the assumption that the change in climate is relatively stable 
across space (that is, has high spatial autocorrelation). We downloaded 
the five preprocessed Bioclim variables for all nine GCMs at 10 min 
spatial resolution from WorldClim 252, and aggregated with bilinear 
interpolation to 0.25° spatial resolution (approximately 25 km at the 
equator) to match with the LUH2 land-use data resolution.

Historical land-use data for 2015 and projected land-use data for 
2070 were obtained from the Land Use Harmonization 2 (LUH2) 
project at 0.25° spatial resolution53,56. The LUH2 data reconstructs 
and projects changes in land use among 12 categories: primary for-
est, non-forested primary land, potentially forested secondary land, 
potentially non-forested secondary land, managed pasture, rangeland, 
cropland (four types) and urban land. To capture species’ habitat pref-
erences, we downloaded data for all 3,870 mammal species from the 
IUCN Habitat Classification Scheme (v.3.1) and mapped the 104 unique 
IUCN habitat classifications onto the 12 land-use types present in the 
LUH2 dataset following ref. 57 (Supplementary Table 1).

Finally, we downloaded global population projections from the 
SEDAC Global 1 km Downscaled Population Base Year and Projection 
Grids based on the SSPs v.1.058, and selected the year 2070 for RCP 2.6 
(see the ‘Climate and land-use futures’ section). These data are down-
scaled to 1 km from a previous dataset at 7.5 arcminute resolution59. We 
aggregated 1 km grids up to 0.25° grids for compatibility with other 
layers, again using bilinear interpolation.

Additional data. A handful of smaller datasets were incidentally used 
throughout the study. These included the IUCN Red List, which was used 
to obtain species taxonomy, range maps and habitat preferences60; the 
US Geological Survey Global Multi-resolution Terrain Elevation Data 
2010 dataset, which was used to derive a gridded elevation in metres 
at around 25 km resolution; and a literature-derived list of suspected 
hosts of Ebola virus61.

https://github.com/viralemergence/iceberg
https://www.gbif.org/
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Mapping species distributions
We developed SDMs for a total of 3,870 species in this study, divided 
into two modelling pipelines on the basis of data availability (Supple-
mentary Figs. 1 and 2).

Poisson point process models. For 3,088 species with at least 10 
unique presence records, Poisson point process models, a method 
that is closely related to maximum entropy SDMs, were fitted using 
regularized downweighted Poisson regression62 with 20,000 back-
ground points, using the R package glmnet63,64. The spatial domain 
of predictions was chosen on the basis of the continent(s) in which a 
species occurred in their IUCN range map. As a final error check, spe-
cies ranges were constrained to a 1,000 km buffer around their IUCN 
ranges. We trained SDMs on current climate data using the WorldClim 
2 dataset52, using the five previously specified Bioclim variables.

To reduce the possibility of overfitting patterns due to spatial aggre-
gation, we used spatially stratified cross-validation. Folds were assigned 
by clustering records on the basis of their coordinates and splitting 
the resulting dendrogram into 25 groups. These groups were then 
randomly assigned to five folds (if a species had fewer than 25 records, 
a smaller number of groups was used based on sample size, and these 
were split into five folds). This flexible approach accounts for variation 
in the spatial scale of aggregation among species by using the cluster 
analysis. By splitting into 25 groups initially (rather than 5), we obtain 
better environmental coverage (at least on average) within a fold and 
minimize the need to extrapolate for withheld predictions.

Linear (all species), quadratic (species with >100 records) and product 
(species with >200 records) features were used. Positive coefficients of 
quadratic features are not allowed (that is, all have an upper bound of 0 
in the model-fitting process), to avoid the undesirable effect of increas-
ing suitability predictions at range edges. The regularization parameter 
was determined on the basis of fivefold cross-validation with each fold, 
choosing a value 1 s.d. below the minimum deviance65. This resulted in five 
models per species that were then combined into an unweighted ensem-
ble. Continuous predictions of the ensemble were converted to binary 
presence/absence predictions by choosing a threshold based on the fifth 
percentile of the ensemble predictions at training presence locations.

When models were projected into the future, we limited extrapola-
tion to 1 s.d. beyond the data range of the presence locations for each 
predictor. This decision balances a small amount of extrapolation based 
on patterns in a species niche with limiting the influence of mono-
tonically increasing marginal responses, which can lead to statisti-
cally unsupported (and probably biologically unrealistic) responses 
to climate.

Range-bagging models. For an additional 783 poorly sampled spe-
cies (3 to 9 unique points on the 25 km grid), we produced SDMs with a 
simpler range-bagging algorithm, a stochastic hull-based method that 
can estimate climate niches from an ensemble of underfit models66,67 
that is therefore well suited for smaller datasets. From the full collection 
of presence observations and environmental variables range-bagging 
proceeds by randomly sampling a subset of presences (proportion 
p) and a subset of environmental variables (d). From these, a convex 
hull around the subset of points is generated in environmental space.  
The hull is then projected onto the landscape with a location considered 
part of the species range if its environmental conditions fall within 
the estimate hull. The subsampling is replicated N times, generating 
N ‘votes’ for each cell on the landscape. One can then choose a thresh-
old for the number of votes required to consider the cell as part of the 
species’ range to generate the binary map used in our downstream 
analyses. On the basis of the guidelines in ref. 66, we chose p = 0.33, d = 2 
and N = 100. We then chose the voting threshold to be 0.165 (=0.33/2) 
because this implies that the cell is part of the range at least half the 
time for each subsample. After visual inspection, this generally led to 

predictions that were very conservative about inferring that unsampled 
locations were part of a species distribution. The same environmental 
predictors and ecoregion-based domain selection rules were used 
for range-bagging models as were used for the point process models 
discussed above. This hull-based approach is particularly valuable for 
poorly sampled species which may suffer from sampling bias because 
bias within niche limits has little effect on range estimates.

Model validation and limitations. PPM models performed well, with a 
mean test area under the receiver operator curve (AUC) under fivefold 
cross-validation (using spatial clustering to reduce inflation) of 0.78 
(s.d., 0.14). The mean partial AUC evaluated over a range of sensitiv-
ity relevant for SDM (0.8–0.95) was 0.81 (s.d., 0.09). The mean sen-
sitivity of binary maps used to assess range overlap (based on the 5% 
training threshold used to make a binary map) was 0.90 (s.d., 0.08). 
Range-bagging models were difficult to meaningfully evaluate be-
cause they were based on extremely small sample sizes (3–9). The mean 
training AUC (we did not perform cross-validation due to small sample 
size) was 0.96 (s.d., 0.09). The binary maps had perfect sensitivity (1) 
because the threshold used to make them was chosen sufficiently low 
to include the handful of known presences for each species. One way 
to assess how well we inferred the range for these species is to quantify 
how much of the range was estimated based on our models, on the 
basis of the number of 10 km cells predicted to be part of the species 
range even when it was not observed there. The mean number of cells 
inferred to contain a presence was 254 (s.d., 503); however, the distri-
bution is highly right skewed with a median of 90. This indicates that 
the range-bagging models were typically relatively conservative about 
inferring ranges for poorly sampled species.

Although our models performed well, we note that researchers should 
approach the interpretation of SDMs with a certain degree of caution. 
Even adhering to best practices, many SDM methods are sensitive to 
subjective user-end choices that influence model performance, transfer-
ability and interpretability. Some of those choices may have marginally 
affected the patterns that we document in this study. For example, to 
quantify the resilience of our results to the choice of threshold, we con-
structed pairwise overlaps for the current range estimates of all species 
across three habitat suitability thresholds (1%, 5% and 10%). We did this 
using the climate projections, the IUCN-clipped climate projections, 
and the land-use and IUCN-clipped projections (see the sections below), 
such that there were nine total replicates, only one of which (IUCN and 
land use-clipped 5% threshold) was used in our main analyses. We fitted 
the proportional overlap between each species pair across all nine rep-
licates in a linear mixed model with the identity of the species pair and 
the thresholding replicate as random effects to quantify the variance 
associated with the choice of processing pipeline compared with the vari-
ance associated with the species pair itself. We also examined the mean 
proportional overlap across the nine replicates. Our linear mixed model 
examining the variance associated with thresholding pipeline found that 
thresholding accounted for only 2.2% of the variance in proportional 
overlap, in contrast to the 72.3% accounted for by the identity of the spe-
cies pair. Furthermore, there was very little difference observed in the 
mean proportional overlap and the number of overlapping species across 
thresholds. These results demonstrate that the choice of thresholding 
had an effect on the results of our analysis, but an extremely marginal one, 
and we expect that similar results would be found for other choices such 
as variable set reduction, model calibration, the resolution of predictor 
data and the processing of point occurrence data.

Finally, we note that—although many factors besides climate are 
ignored by our models, such as biotic interactions or animal social 
behaviour—our models are tailored to our aim: predicting hotspots 
of elevated risk under climate change. In our application, correctly 
predicting presences is more important than incorrect prediction of 
absences, because we are focused on the potential for new species 
overlap. We cannot say whether that overlap will happen, owing to 



the multiple factors besides climate that influence distributions and 
range shifts, but we can say with confidence based on robust current 
niche estimates, validated with spatially stratified cross-validation and 
biologically grounded estimates of dispersal ability where risk would 
be elevated in accordance with our simulations.

Habitat range and land use. To capture species’ habitat preference, we 
collated data for all 3,870 mammal species from the IUCN Habitat Clas-
sification Scheme (v.3.1). We next mapped 104 unique IUCN habitat clas-
sifications onto the 12 land-use types present in the LUH2 dataset. For 962 
species, no habitat data were available, or no correspondence existed 
between a land type in the IUCN scheme and our land-use data; for these 
species, land-use filters were not used. Filtering on the basis of habitat was 
performed as permissively as possible: species were allowed in current 
and potential future ranges to exist in a pixel if any non-zero percent was 
assigned a suitable habitat type; almost all pixels contain multiple habitats. 
In some scenarios, human settlements cover at least some of a pixel for 
most of the world, allowing synanthropic species to persist throughout 
most of their climatically suitable range. For those with habitat data, the 
average reduction in range from habitat filtering was 7.6% of pixels.

Predicting future species distributions
We modelled a total of 136 future scenarios, produced by the four paired 
climate–land-use change pathways replicated across nine GCMs (with 
one, GFDL-ESM4, available for only two climate scenarios, RCP 2.6 and 
RCP 7.0; see below), modified by two optional filters on species ranges 
(habitat preferences and dispersal limits). The full matrix of possible 
scenarios captures a combination of scenario uncertainty about global 
change and epistemological uncertainty about how best to predict 
species’ range shifts. By filtering potential future distributions on the 
basis of climate, land-use and dispersal constraints, we aimed to maxi-
mize realism; our predictions were congruent with extensive previous 
literature on climate- and land-use-driven range loss57,68,69.

Climate and land-use futures. We considered four possible scenarios 
for the year 2070 each based on a pairing of the RCPs and the SSPs. RCP 
numbers (that is, 2.6 or 4.5) represent W m−2 of additional radiative 
forcing by the end of the century, whereas SSPs describe alternative 
possible pathways of socioeconomic development and demographi-
cal change. As pairs, SSP–RCP scenarios describe alternative futures 
for global socioeconomic and environmental change. Not all SSP–RCP 
scenario combinations in the ‘scenario matrix’ are realistically pos-
sible70. For example, in the vast majority of integrative assessment 
models, decarbonization cannot be achieved fast enough in the SSP 5 
scenario to achieve RCP 2.6.

We used four SSP–RCP combinations: SSP 1–RCP 2.6, SSP 2–RCP 4.5, 
SSP 3–RCP 7.0, and SSP 5–RCP 8.5. We selected these four scenarios 
because they span a wide range of plausible global change futures, 
and serve as the basis for climate model projections in the Scenario 
Model Intercomparison Project for the newest generation of GCMs 
(CMIP6)13. SSP 1–RCP 2.6 is a scenario with low population growth, 
strong greenhouse gas mitigation and land-use change (especially an 
increase in global forest cover), which makes global warming probably 
less than 2 °C above preindustrial levels by 2100; SSP 2–RCP 4.5 has 
moderate land-use change and greenhouse gas mitigation with global 
warming of around 2.5 °C by 2100; SSP 3–RCP 7.0 has high population 
growth, substantial land-use change (especially a decrease in global 
forest cover) and very weak greenhouse gas mitigation efforts with 
global warming of around 4 °C by 2100; and SSP 5–RCP 8.5 is the high-
est warming scenario with less decrease in forest cover compared with 
SSP 3 but more substantial increases in coal and other fossil fuel use, 
leading to more than 4 °C warming by 210013,71–73.

Climate model uncertainty. To identify the contribution of climate 
model uncertainty and its propagation through our analysis, we used 

all nine selected GCMs from CMIP6 and produced multimodel averages 
for Figs. 1–5. For all statistical analysis in the main text, we present each 
multimodel mean with a s.d. across the nine GCMs. We also compared 
the first encounters from the two models with the highest (CanESM5) 
and lowest (MIROC6) effective climate sensitivity in the available CMIP6 
set on WorldClim54 (Extended Data Fig. 5) . We also present the map of 
first encounters and novel viral sharing in each GCM run for each RCP, 
accounting for both climate and land-use change, with the full dispersal 
and limited dispersal scenario (Supplementary Figs. 3–20).

Limiting dispersal ability. Not all species can disperse to all environments, 
and not all species have equal dispersal ability, in ways that are likely to 
covary with viral sharing properties. We follow a rule proposed in ref. 14, in 
which Schloss described an approximate formula for mammal range shift 
ability on the basis of body mass and trophic position. For carnivores, the 
maximum distance travelled in a generation is given as D = 40.7M 0.81, where 
D is distance in kilometres and M is body mass in kilograms. For herbivores 
and omnivores, the maximum is estimated as D = 3.31M 0.65.

We used mammalian diet data from the EltonTraits database74, and 
used the same cut-off as ref. 14 to identify carnivores as any species with 
10% or less plants in their diet. We used body mass data from EltonTraits 
in the Schloss formula to estimate maximum generational dispersal, 
and converted estimates to annual maximum dispersal rates by divid-
ing by generation length, as previously estimated by another compre-
hensive mammal dataset75. We multiply by 50 years (from 2020 as the 
present to 2070) and use the resulting distance as a buffer around the 
original range map, and constrain possible range shifts within that 
buffer. For 420 species with missing data in one of the required sources, 
we interpolated dispersal distance based on the closest relative in our 
supertree with a dispersal velocity estimate.

Qualified by the downsides of assuming full dispersal76, we excluded 
bats from the assumed scaling of dispersal limitations. The original 
study14 chose to omit bats entirely, and subsequent work has not pro-
posed any alternative formula. Moreover, the Schloss formula per-
forms notably poorly for bats. For example, it would assign the largest 
bat in our study, the Indian flying fox (Pteropus giganteus), a dispersal 
ability of lower than that of the grey dwarf hamster (Cricetulus migra-
torius). Bats were instead given full dispersal in all scenarios: given 
significant evidence that some bat species regularly cover continental 
distances24,25, and that isolation by distance is uncommon within many 
bats’ ranges35, we felt this was a defensible assumption for modelling 
purposes. Moving forwards, the rapid range shifts already observed 
in many bat species (see ‘Dispersal drives the importance of bats’ in 
the main text) could provide an empirical reference point to fit a new 
allometric scaling curve (after standardizing those results for the 
studies’ many different methodologies). A different set of functional 
traits probably govern the scaling of bat dispersal, chiefly the aspect 
ratio (length:width) of wings, which is a strong predictor of population 
genetic differentiation35. Migratory status would also be important 
to include as a predictor, although here we exclude information on 
long-distance migration for all species (owing to a lack of any real frame-
work for adding that information to SDMs in the literature).

Explaining spatial patterns
To examine the geography of new assemblages, we used linear models 
that predicted the number of first encounters (new overlap of species 
pairs) at the 25 km level (N = 258, 539 grid cells). Explanatory variables 
included: richness (number of species inhabiting the grid cell in our 
predicted current ranges for the given scenario); elevation in metres 
(derived from the US Geological Survey Global Multi-resolution Terrain 
Elevation Data 2010 dataset); and the predominant land cover type for 
the grid cell. We simplified the classification scheme for land-use types 
into five categories for these models (human settlement, cropland, 
rangeland and pasture, forest and unforested wildland), and assigned 
pixels a single land-use type based on the maximum probability from 
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the land-use scenarios. We fitted a model for each scenario and pair 
of biological assumptions; owing to the large effect that bats had on 
the overall pattern, we retrained these models on subsets of encoun-
ters with and without a bat species involved. To help model fitting, we 
log[x + 1]-transformed the response variable (number of overlaps in 
the pixel) and both continuous explanatory variables (metres of eleva-
tion above the lowest point and species richness). As some elevation 
values were lower than 0 (that is, below sea level), we treated elevation 
as metres above the lowest terrestrial point rather than metres above 
sea level to allow us to log-transform the data.

Viral sharing models
Criteria for species inclusion. Of the 3,870 species for which we gener-
ated distribution models, 103 were aquatic mammals (cetaceans, sireni-
ans, pinnipeds and sea otters) and 382 were not present in the mamma-
lian supertree that we used for phylogenetic data77. These species, and 
the associated SDMs, were excluded from the analysis. Aquatic species 
were removed using a two-filter approach, by first cross-referencing with 
Pantheria78, and second by checking that no species had only aquatic 
habitat use types (see the ‘Habitat range and land use’ section). We also 
excluded 246 monotremes and marsupials because the shape of the 
supertree prevented us from fitting satisfactory generalized additive 
mixed model (GAMM) smooths to the phylogeny effect, leaving 3,139 
non-marine placental mammals with associated phylogenetic data.

Generalized additive mixed models. We used a previously published 
model of the phylogeography of viral sharing patterns to make predic-
tions of future viral sharing10. This model was based on an analysis of 
510 viruses shared between 682 mammal species2, and predicted the 
probability that a pair of mammal species will share a virus given their 
geographical range overlap and phylogenetic relatedness. The origi-
nal study uncovered strong, nonlinear effects of spatial overlap and 
phylogenetic similarity in determining viral sharing probability, and 
simulating the unobserved global network using these effect estimates 
capitulated multiple macroecological patterns of viral sharing.

In the original study, a GAMM was used to predict virus sharing as a 
binary variable on the basis of (1) geographical range overlap; (2) phylo-
genetic similarity; and (3) species identity as a multimembership random 
effect. The phylogeographical explanatory variables were obtained from 
two broadly available, low-resolution data sources: pairwise phylogenetic 
similarity was derived from a mammalian supertree previously modified 
for host-pathogen studies2,77, with similarity defined as the inverse of 
the cumulative branch length between two species, scaled to between 0 
and 1. Geographical overlap was defined as the area of overlap between 
two species’ IUCN range maps, divided by their cumulative range size79.

We first retrained the GAMMs from10 on the pairwise overlap matrix 
of SDMs generated for this study, such that present predictions would 
be comparable with potential future distributions. Of the 3,139 species 
in our reduced dataset, 544 had viral records in our viral sharing dataset 
and shared with at least one other mammal, and were used to retrain the 
GAMM from ref. 10. To check the performance of the GAMM, we predicted 
sharing patterns with (1) only random effects, (2) only fixed effects and 
(3) with both. To extend predictions to the full set of mammals, we gener-
ated random effects for out-of-sample species by drawing from the fitted 
distribution of species-level effects (predicting without these random 
effects underestimates species variance, resulting in mean sharing of 
0.02 rather than the observed 0.06). The mean sharing value across these 
predictions closely approximated observed sharing probability (∼0.06).

Note that this model uses citation counts to correct for sampling 
bias, an imperfect method but one that leads to strong validation per-
formance on an independently compiled dataset of host–virus associa-
tions, which carries a different set of biases. However, it is still possible 
that sampling bias in host–virus datasets could artificially inflate the 
signal of phylogeography in viral sharing, if researchers investigat-
ing a noteworthy viral detection then preferentially sample closely 

related host species in the immediate area. It is improbable that these 
effects would bias our results in a particular direction, but accounting 
for these biases should at least involve some acknowledgement that 
cross-species transmission is challenging to predict (see the discus-
sion in ref. 10 for a more in-depth treatment of sampling bias effects).

Model validation and limits. Compared with the current viral sharing 
matrix, the model performs well with only fixed effects (AUC = 0.80) 
and extremely well with both fixed and random effects (AUC = 0.93). 
The model explained a very similar proportion of the deviance in viral 
sharing to that in ref. 10 (44.5% and 44.8%, respectively).

In practice, several unpredictable but confounding factors could 
affect the reliability of this model as a forecasting tool, including tem-
perature sensitivity of viral evolution in host jumps41, or increased 
susceptibility of animals with poorer health in lower-quality habitat or 
unfavourable climates. Moreover, once viruses can produce an infec-
tion, their ability to transmit within a new species is an evolutionary 
race between mutation and recombination rates in viral genomes, host 
innate and adaptive immunity, virulence-related mortality, and legacy 
constraints of coevolution with previous hosts and vectors80,81. How-
ever, data cataloguing these precise factors are hardly comprehensive 
for the hundreds of zoonotic viruses, let alone for the thousands of 
undescribed viruses in wildlife. Moreover, horizontal transmission is 
not necessary for spillover potential to be considered significant; for 
example, viruses such as rabies or West Nile virus are not transmitted 
within human populations but humans are still noteworthy hosts.

Mapping opportunities for sharing. We used the GAMM effect es-
timates to predict viral sharing patterns across the 3,139 mammals 
with associated geographical range and phylogenetic data, for both 
the present and future scenarios. By comparing current and future 
sharing probabilities for each of the four global change scenarios, we 
estimated which geographical and taxonomic patterns of viral sharing 
would probably emerge. We separately examined patterns of richness, 
patterns of sharing probability and their change (that is, future sharing 
probability — current sharing probability, giving the expected prob-
ability of a new sharing event).

A subset of the mammals in our dataset were predicted to encounter 
each other for the first time during range shifts. For each of these pair-
wise first encounters, we extracted the area of overlap in every future 
scenario, and assigned each overlap a probability of sharing from the 
mean GAMM predictions and mapped the mean and cumulative prob-
ability of a new sharing event happening in a given geographical pixel.

Case study on ZEBOV. For a case study in possible significant cross- 
species transmission, we compiled a list of known hosts of ZEBOV, a zo-
onosis with potentially high host breadth that has been known to cause 
wildlife die-offs, but has no known definitive reservoir. Hosts were taken 
from two sources: the training dataset on host–virus associations2 and 
an additional dataset of filovirus testing in bats61. In the latter case, any 
bats that have been reported to be antibody positive or PCR-positive 
for ZEBOV were included. A total of 19 current known hosts were se-
lected. We restricted our analysis to the 13 hosts from Africa, because 
there is no conclusive evidence that ZEBOV actively circulates outside 
Africa; although some bat species outside Africa have tested positive 
for antibodies to ZEBOV, this is probably due to cross-reactivity with 
other undiscovered filoviruses61,82,83. We used the 13 African hosts to 
predict possible first encounters in all scenarios (Extended Data Fig. 8),  
and mapped the current richness of ZEBOV hosts, the change in host 
richness by 2070 and the number of first encounters (Fig. 3).

Overlap with human populations. To examine the possibility that hot-
spots of cross-species transmission would overlap with human popula-
tions, we used SEDAC’s global population projections v.1.0 for the year 
207058. We aggregated these to native resolution for each of the four 



SSPs paired with the native RCP–SSP pairing for the SDMs. In Fig. 4, we 
present the population projections for SSP 1, which pairs with RCP 2.6.

Timing of opportunity
As a final supplementary analysis, we examined the potential timing of 
first encounters throughout a century of species’ movements. To do so, 
we reproduced our entire modelling pipeline using CHELSA v.2.1, a climate 
product for CMIP6 with five general circulation models (GFDLESM4, 
IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0 and UKESM1-0-LL) pro-
jected in three scenarios (SSP 1–RCP 2.6, SSP 3–RCP 7.0 and SSP 5–RCP 8.5) 
and averaged in four time slices (1981–2010, 2011–2040, 2041–2070 and 
2071–2100). Given the focus on timing, species occurrence records were 
filtered to span the years 1900 to 2019; this enabled us to build 2,948 point 
process models and 903 range-bagging models (3,850 models) for this 
analysis. We treated the first time interval as the baseline for SDMs, and 
projected species distributions into each of those three future intervals; 
we then identified the first encounters in each time interval as a cumula-
tive process (for example, two species that meet in 2011–2040 for the first 
time cannot also have a first encounter in 2041–2070).

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
No original data were generated during our study. All raw datasets are 
available online, including the GBIF database of biodiversity occurrence 
data (https://www.gbif.org/), the IUCN Red List (https://www.iucn-
redlist.org/), the WorldClim climate dataset (https://worldclim.org/)52, 
the CHELSA climate dataset (https://chelsa-climate.org/cmip6/)84, the 
LUH2 land-use dataset (https://luh.umd.edu/)56, the USGS GMTED 2010 
elevation dataset (https://www.usgs.gov/coastal-changes-andimpacts/
gmted2010), the HP3 dataset of host–virus associations (https://github.
com/ecohealthalliance/HP3; https://doi.org/10.5281/zenodo.596810) 
and a dataset of filovirus testing in bats61.

Code availability
Code to reproduce the study is deposited on Zenodo (https://doi.
org/10.5281/zenodo.6463429) and is available at GitHub (https://
github.com/viralemergence/iceberg). Additional code to generate 
the generalized additive mixed models used in this study, reused 
from ref. 10, are also available at GitHub (https://github.com/gfalbery/
ViralSharingPhylogeography).
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Extended Data Fig. 1 | The mammal-virus network. The present-day viral 
sharing network by mammal order inferred from modelled pairwise 
predictions of viral sharing probabilities. Edge width denotes the expected 
number of shared viruses (the sum of pairwise species-species viral sharing 
probabilities), with most sharing existing among the most speciose and closely 

related groups. Edges shown in the network are the top 25% of links. Nodes are 
sized by total number of species in that order in the host-virus association 
dataset, colour is scaled by degree. Silhouettes are from http://phylopic.org 
under Creative Commons license (creativecommons.org/licenses/by/3.0).

http://phylopic.org


Extended Data Fig. 2 | Predicted phylogeographical structure of viral 
sharing. Phylogeographical prediction of viral sharing using a generalized 
additive mixed model. Viral sharing increases as a function of phylogenetic 
similarity (upper left) and geographical overlap (upper right), which have 
strong nonlinear interactions, shown in the contour map of joint effects 

(bottom left). Error bars are the 95% confidence interval for the estimated 
response. White contour lines denote 10% increments of sharing probability. 
Declines at high values of overlap may be an artefact of model structure and low 
sampling in the upper levels of geographical overlap, shown in a hexagonal bin 
chart of the raw data distribution (bottom right).
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Extended Data Fig. 3 | Outcomes by model formulation and climate change 
scenario. Heatmaps displaying predicted changes across model formulations. 
(A) Range expansions were highest in non-dispersal-limited scenarios and in 
scenarios with lower levels of global warming. (B) The number of predicted first 
encounters was higher in non-dispersal-limited scenarios and in scenarios with 
lower levels of global warming. (C) The number of expected new viral sharing 
events was higher in non-dispersal-limited scenarios and in more severe RCPs. 
(D) The overall change in sharing probability (connectance) across the viral 

sharing network between the present day and the future scenarios; absolute 
changes may appear small, but an 0.4% increase in connectivity is notable on 
the scale of millions of possible pairwise combinations of species. Change is 
positive across all scenarios, being greatest in non-dispersal-limited scenarios 
and in scenarios with lower levels of global warming. Results are averaged 
across nine global climate models, with standard deviation indicated in 
parentheses underneath main statistics.



Extended Data Fig. 4 | Geographical distribution of first encounters. 
Predictions were carried out for four representative concentration pathways 
(RCPs), accounting for climate change and land use change, without (left) and 

with dispersal limits (right). Darker colours correspond to greater numbers of 
first encounters in the pixel. Results are averaged across nine global climate 
models.
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Extended Data Fig. 5 | Geographical distribution of first encounters in two 
global climate models. Predictions were carried out for four representative 
concentration pathways (RCPs), accounting for climate change and land use 
change through pairing with shared socioeconomic pathways (SSPs) as 

detailed in the Methods. The two models selected are those with the highest 
(CanESM5) and lowest (MIROC6) effective climate sensitivity in the available 
CMIP6 set on WorldClim54. Darker colours correspond to greater numbers of 
first encounters in the pixel.



Extended Data Fig. 6 | Geographical distribution of expected viral sharing 
events from first encounters. Predictions were carried out for potential 
future distributions for four representative concentration pathways (RCPs), 
accounting for climate change and land use change, without (left) and with 
dispersal limits (right). Darker colours correspond to greater numbers of new 
viral sharing events in the pixel. Probability of new viral sharing was calculated 

by subtracting the species pair’s present sharing probability from their future 
sharing probability that our viral sharing GAMMs predicted. This probability 
was projected across the species pair’s range intersection, and then summed 
across all novel species pairs in each pixel. Results are averaged across nine 
global climate models.
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Extended Data Fig. 7 | Order-level heterogeneity in first encounters. 
Dispersal stratifies the number of first encounters (RCP 2.6 with all range 
filters), where some orders have more than expected at random, based on the 

mean number of first encounters and order size (line). Results are averaged 
across nine global climate models.



Extended Data Fig. 8 | Projected viral sharing from suspected Ebola 
reservoirs is dominated by bats. Node size is proportional to (left) the 
number of suspected Ebola host species in each order, which connect to 
(middle) first encounters with potentially naive host species; and (right) the 
number of projected viral sharing events in each receiving group. (Node size 
denotes proportions out of 100% within each column total). While Ebola hosts 

will encounter a much wider taxonomic range of mammal groups than current 
reservoirs, the vast majority of future viral sharing will occur 
disproportionately in bats. (First encounters are averaged across GCMs to 
capture the maximum range of taxonomic diversity). Silhouettes are from 
http://phylopic.org under Creative Commons license (creativecommons.org/
licenses/by/3.0).

http://phylopic.org
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Extended Data Fig. 9 | Geographical distribution of first encounters over 
time without dispersal restrictions. We show the RCP with the least 
mitigation (RCP 2.6) and most mitigation (RCP 8.5). Projections are made 
based on future climate and land use. Years are the start of each interval  

(2011-2040; 2041-2070; 2071-2100). Darker colours correspond to greater 
numbers of first encounters in the pixel. Results are averaged across five global 
climate models from CHELSA v2.1.



Extended Data Fig. 10 | Geographical distribution of first encounters over 
time with dispersal restrictions. We show the RCP with the least mitigation 
(RCP 2.6) and most mitigation (RCP 8.5). Projections are made based on future 
climate and land use. Years are the start of each interval (2011-2040; 2041-2070; 

2071-2100). Darker colours correspond to greater numbers of first encounters 
in the pixel. Results are averaged across five global climate models from 
CHELSA v2.1.
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